[1] Filadelfi AM, Castrucci AM. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates. J. Pineal Res., 1996, 20 (4): 175–86.

[2] Sugden D, Davidson K, Hough KA, Teh MT. Melatonin, melatonin receptors and melanophores: a moving story. Pigment Cell Res., 2004, 17 (5): 454–60.

[3] McCord CP, Allen FP. Evidences associating pineal gland function with alterations in pigmentation. J Exptl Zool, 1917, 23 (1): 206–224.

[4] Coates PM, Blackman MR, Cragg GM, LevineM, Moss J, White JD. Encyclopedia of dietary supplements, 2005, New York, N.Y: Marcel Dekker. pp. 457–466.

[5] Reiter RJ, Hing-Sing Y. Melatonin: biosynthesis, physiological effects, and clinical applications. Boca Raton: CRC Press. 1993

[6] Lerner AB, Case JD, ´ Takahashi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J. Biol. Chem., 1960, 235: 1992.

[7] Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH. Daily rhythm in human urinary melatonin. Science, 1975, 187 (4172): 169–71.

[8] Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J. Pineal Res., 1993, 14 (4): 151–68.

[9] US patent 5449683, Wurtman RJ, Methods of inducing sleep using melatonin, issued 1995-09-12, assigned to Massachussetts Institute of Technology

[10] Arendt, J. Melatonin: Characteristics, Concerns, and Prospects. Journal of Biological Rhythms, 2005, 20 (4): 291–303. “There is very little evidence in the short term for toxicity or undesirable effects in humans. The extraordinary “hype” of the miraculous powers of melatonin in the recent past did a disservice to acceptance of its genuine benefits.”

[11] Klein DC, Moore RY. Pineal N-acetyltransferase and hydroxyindole- o-methyltrans-ferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 1979; 174:245–62.

[12] Bernard M, Guerlotte´ J, Gre`ve P, et al. Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod Nutr Dev 1999; 39:325–34.

[13] Stehle JH, Foulkes NS, Molina CA, et al. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 1993; 365:314–20.

[14] Zimmermann RC, McDougle CJ, Schumacher M, et al. Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab 1993; 76: 1160–4.

[15] Fournier I, Ploye F, Cottet-Emard JM, Brun J, Claustrat B. Folate deficiency alters melatonin secretion in rats. J Nutr 2002; 132:2781–4.

[16] Munoz-Hoyos A, Amoros-Rodriguez I, Molina-Carballo A, et al. Pineal response after pyridoxine test in children. J Neural Transm Gen Sect 1996; 103:833–42.

[17] Luboshitzky R, Ophir U, Nave R, et al. The effect of pyridoxine administration on melatonin secretion in normal men. Neuroendocrinol Lett 2002; 23:213–7.

[18] Skene DJ, Bojkowski CJ, Arendt J. Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans. Br J Clin Pharmacol 1994; 37:181–6.

[19] Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12:151–80.

[20] Bokjowski CJ, Aldhous ME, English J, et al. Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dimlight inman. HormMetab Res 1987; 19:437–40.

[21] Claustrat B, Brun J, Garry P, et al. A once-repeated study of nocturnal plasma melatonin patterns and sleep recordings in six normal young men. J Pineal Res 1986; 3:301–10.

[22] Follenius M, Weibel L, Brandenberger G. Distinct modes of melatonin secretion in normal men. J Pineal Res 1995; 18: 135–40.

[23] Haimov I, Laudon M, Zisapel N, et al. Sleep disorders and melatonin rhythms in elderly people. Br Med J 1994; 309:167.

[24] Monteleone P, Tortorella A, Borriello R, et al. Suppression of nocturnal plasma melatonin levels by evening administration of sodium valproate in healthy humans. Biol Psychiatry 1997; 41:336–41.

[25] Francis PL, Leone AM, Young IM, et al. Gas chromatographic- mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine. Clin Chem 1987; 33:453–7.

[26] Arendt J, Bojkowski C, Franey C, et al. Immunoassay of 6- hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-h rhythm with Atenolol. J Clin Endocrinol Metab 1985; 60:1166–73.

[27] Iguchi H, Kato KI, Ibayashi H. Melatonin serum levels and metabolic clearance rate in patients with liver cirrhosis. J Clin Endocrinol Metab 1982; 54:1025–7.

[28] Ludemann P, Zwernemann S, Lerchl A. Clearance of melatonin and 6-sulfatoxymelatonin by hemodialysis in patients with end-stage renal disease. J Pineal Res 2001; 31:222–7.

[29] Delagrange P & Boutin J A .herapeutic potential of melatonin ligands. Chronobiol Int 2006; 23, 413-418.

[30] El-Sherif Y, Witt-Enderby P, Li P K, Tesoriero J, Hogan M & Wieraszko A. The action of a charged melatonin receptor ligand, TMEPI, and an irreversible MT2 receptor agonist, BMNEP, on mouse hippocampal evoked potentials in vitro. Life Sci 2004; 75, 3147-3156

[31] Ekmekcioglu C. Melatonin receptors in human: Biological role and clinical relevance. Biomed Pharmacother 2006; 60, 97-108

[32] Rajaratnam S M, Middleton B, Stone B M, Arendt J & Dijk D J. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol 2004; 561, 339-351

[33] Scheer F A & Czeisler C A. Melatonin sleep and circadian rhythms. Sleep Med Rev 2005; 9, 5-9

[34] Cajochen C, Krauchi K & Wirz-Justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 2003; 15, 432-437

[35] Stehle J H, Von Gall C & Korf H W.Melatonin: a clock output, a clock input. J Neuroendocrinol 2003; 15, 383-389

[36] Schibler U, Ripperjer J & Brown S A. Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 2003; 18, 250-260

[37] Ko C H & Takahashi J S. Molecular components of the mammalian circadian clock. Hum Mol Genet Spec 2006; 2, R271-277

[38] Pevet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V & Masson-Pevet M. Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol Int 2006; 23, 39-51

[39] Fahey C D & Zee P C. Circadian rhythm sleep disorders and phototherapy. Psychiatr Clin North Am 2006; 29, 989-1007

[40] Pandi-Perumal S R, Zisapel N, Srinivasan V & Cardinali D P. Melatonin and sleep in aging population. Exp Gerontol 2005; 40, 911-925

[41] Cardinali D P, Brusco L I, Lloret S P & Furio A M. Melatonin in sleep disorders and jet lag. Neuroendocrinol Lett 2002; 1, 9-13

[42] Arendt J. Importance and relevance of melatonin to human biological rhythms. J Neuroendocrinol 2003; 15, 427-431

[43] Romijn H J. The pineal, a tranquilizing organ? Life Sci 1978; 23, 2257-2273

[44] Wehr T A & Rosenthal N E. Seasonality and effective illness. Am J Psychiatry 1989; 46, 829-839

[45] Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson L G, Kasper S, Peltonen L, Adolfsson R, Schalling M & Partonen T. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference.Neuropsychopharmacol 2003; 28, 734-739

[46] Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal S R, Parry B & Cardanali D P. Melatonin in mood disorders. World J Biol Psychiatry 2006; 7, 138-151

[47] Paul M A, Gray G, MacLellan M & Pigeau R A. Sleep-inducing pharmaceuticals: a comparison of melatonin, zaleplon, zopiclone, and temazepam. Aviat Space Environ Med 2004; 75, 512-519

[48] Szymanska A, Rrabe-Jablonska J & Karasek M. Diurnal profile of melatonin concentrations in patients with major depression: relationship to the clinical manifestation and antidepressant treatment. Neuroendocrinol Lett 2001; 22, 192-198

[49] Sep-Kowalikowa B. Phototherapy as a supporting treatment in depressive patients. Psychiatr Pol 2002; 36, 99-108

[50] Lockley S W, Brainard G C & Czeisler C A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 2003; 88, 4502-4505

[51] Young S N. The clinical psychopharmacology of tryptophan. Nutr Brain 1986; 7, 49-88

[52] Roy A, Virkkunen M, Guthrie S & Linnoila M. Indices of serotonin and glucose metabolism in violent offenders, arsonists, and alcoholics Ann N Y Acad Sci 1986; 487, 202-220

[53] Maestroni G J & Conti A. Beta-endorphin and dynorphin mimic the circadian immunoenhancing and antistress effects of melatonin. Int J Immunopharmacol 1989; 11, 333-340

[54] von-Bohr C, Ursing C, Yasui N, Tybring G, Bertilsson L & Röjdmark S. Fluvoxamine but not citalopram increases serum melatonin in healthy subjects – an indication that cytochrome p450 CYP1A2 and CYP2C19 hydroxylate melatonin. Eur J Clin Pharmacol 2000; 56, 123-127

[55] Yeleswaram K, Vachharajani N & Santone K. Involvement of cytochrome P450 isoenzymes in melatonin metabolism and clinical implications. J Pineal Res 1999; 26, 190-191

[56] Macchi M M & Bruce J N. Human pineal physiology and functional significance of melatonin. Front Neuro-endocrinol 2004; 25, 177-195

[57] Suzen S. Recent developments of melatonin related antioxidant compounds. Comb Chem High Throughput Screen 2006; 9, 409-419

[58] Montilla–Lopez P, Munoz-Aqueda M C, Feijoo-Lopez M, Munoz-Castaneda J M, Bujalance-Arenas I & TunezFinana I. Comparison of melatonin versus vitamin C on antioxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 2002; 451, 237-243

[59] Mayo J C, Sainz R M, Tan D X, Hardeland R, Leon J, Rodriquez C & Reiter R J. Anti-inflammatory action of melatonin and its metabolites, N -acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1 -acetyl-5- methoxykynuramine (AMK) in macrophages. J Neuroimmunol 2005; 165, 139-149

[60] Hardeland R & Pandi-Perumal S R. Melatonin, a potent agent in antioxidative defense: actions as a naturalfood constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 2005; 10, 2-22

[61] Than N N, Heer C, Laatsch H & Hardeland R. Reactions of melatonin metabolite N-acetyl-5-methoxy kynuramine (AMK) with ABTS cation radical: Identification of new oxidation products. Redox Rep 2006; 11, 15-24

[62] Guenther A l, Schmidt S I, Laatsch H, Fotso S, Ness H, Ressmeyer A R, Poeggeler B & Hardeland R. Reactions of melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species: Formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro AMK. J Pineal Res 2005; 39, 251-260

[63] Leon J, Acuna-Castroviejo D, Escames G, Tan D X & Reiter R J. Melatonin mitigates mitochondrial malfunction. J Pineal Res, 2005, 38, 1-9

[64] Zhang H, Akbar M & Kim HY. Melatonin an endogenous negative modulator of 12 lipoxygenation in the rat pineal gland. Biochem J 1999; 344, 487-493

[65] Rodriguez C, Mayo J C, Sainz R M, Antolin I, Herrera F, Martin V & Reiter R J. Regulation of antioxidant enzymes: a significant role of melatonin. J Pineal Res 2004; 36, 1-9

[66] Mayo J C, Sainz R M, Tan D X, Antolin I, Rodriquez C & Reiter R J. Melatonin and Parkinson’s disease. Endocrine 2005; 27, 169-178

[67] Srinivasan V, Pandi-Perumal S R, Maestroni G J, Esquifino A I, Hardeland R & Cardanali D P. Role of melatonin in neurodegenerative diseases. Neurotox Res 2005; 7, 293-318

[68] Feng Z, Oin C, Chang Y & Zhang J T. Early melatonin supplementation alleviates oxidative stress in a transgenic mouse model of Alzheimer’s disease. Free Radic Biol Med 2006; 40, 101-109

[69] Lee C O. Complementary and alternative medicine patients are talking about melatonin. Clin J Oncol Nurs 2006; 10, 105-107

[70] Beloosesky Y, Grinblat J, Landon M, Grosman B, Streifler J Y & Zisapei N. Melatonin rhythm in stroke patients. Neurosci Lett 2002; 319, 103-106

[71] Lee Y M, Chen Y R, Hsiao G, Sheu J R, Wang J J & Yen M H. Protective effect of melatonin on myocardial ischemia/reperfusion injury in vivo. J Pineal Res 2002; 33, 72-80

[72] Milzani A, Dalledonne I & Colomlso R. Prolonged oxidative stress on actin 3. Arch Biochem Biophys 1997; 339, 267-274

[73] Benitez-King G, Tunez I, Bellon A, Ortiz G G & AntonTay F. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol 2003; 182, 151-159

[74] Benitez-king G, Ortiz-Lopez L & Jimenez-Rubio G. Melatonin precludes cytoskeletal collapse caused by hydrogen peroxide: Participation of protein kinase C. Therapy 2005; 2, 767-778

[75] Reiter R J, Tan D X & Pappolla M A. Melatonin relieves the neural oxidative burden that contributes to dimentias. Ann N Y Acad Sci 2004; 1035, 179-196

[76] Nishiyama K, Yasue H, Moriyama Y, Tsunoda R, Ogawa H, Yoshimura M & Kugiyama K. Acute effects of melatonin administration on cardiovascular autonomic regulation in healthy men. Am Heart J 2001; 141, E9

[77] Bandyopadhyay D, Biswas K, Bhattacharyya M, Reiter R J & Banerjee R K. Involvement of reactive oxygen species in gastric ulceration: protection by melatonin. Indian J Exp Biol 2002; 40, 693-705

[78] Ferraz F F, Kos A G, Janino P & Homsi E. Effects of melatonin administration to rats with glycerol- induced acute renal failure. Ren Fail 2002; 24, 735-746

[79] Majsterek I, Gloc E, Blasiak J & Reiter R J. A comparison of the acute amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 2005; 38, 254-263

[80] Skwarlo-Sonta K. Melatonin in immunity: comparative aspects. Neuroendocrinol Lett 2002; 23, 67-72

[81] Skwarlo-Sonta K, Majewski P, Markowska M, Jakubowska A & Waloch M. Bi-modal effect of melatonin on inflammatory reaction in young chickens. In: Treatise on pineal gland and melatonin (Haldar C, Singaravel M & Maitra S K, ed.), 2002, pp. 225-238, Science Publishers Inc. Enfield N H and Plymouth U K

[82] Carrillo-Vico A, Reiter R J, Lardone P J, Herrera J L, Fernandez-Montesinos R, Guerrero J M & Pozo D. The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs 2006; 7, 423-431

[83] Sutherland E R, Ellison M C, Kraft M & Martin R J. Elevated serum melatonin is associated with the nocturnal worsening of asthma. J Allergy Clin Immunol 2003; 112, 513-517

[84] Maestroni G J M, Cardinali D P, Esquifino A I & PandiPerumal S R. Does melatonin play a disease promoting role in rheumatoid arthritis? J Neuroimmunol 2005; 158, 106-111

[85] Regodon S, Martin–Palomino P, Fernandez Montesinos R, Herrera J L, Carroscosa- Salmoral M P, Piriz S, Vadillo S, Guerrero J M & Pozo D. The use of melatonin as a vaccine agent. Vaccine 2005; 23, 5321-5327

[86] Winczyk K, Pawlikowski M & Karasek M. Melatonin and RZR/ROR receptor ligand CGP52608 induce apoptosis in the murine colonic cancer. J Pineal Res 2001; 31, 179-182

[87] Liu F, Ng T B & Fung M C. Pineal indoles stimulate the gene expression of immunomodulating cytokines. J Neural Transm 2001; 108, 397-405

[88] Garcia-Maurino S, Pozo D, Calvo J R & Guerrero J M. Correlation between nuclear receptors expressionand enhanced cytokine production in humanlymphocytic and monocytic cell lines. J Pineal Res 2000; 29, 129-137

[89] Juszczak M & Michalska M. The effect of melatonin on prolactin, Luteinizing hormone (LH), and follicle stimulating hormone (FSH) synthesis and secretion. Postepy Hig Med Dosw 2006a; 60, 431-438

[90] Juszczak M & Michalska M. The role of the pineal gland and melatonin in the regulation of adenohypophysialhormone synthesis and secretion. Postepy Hig Med Dosw 2006b; 60, 653-659

[92] Karasek M, Pawlikowski M & Lewinski A. Hyperprolactinemia: Causes, diagnosis, and treatment. Endokrynol Pol 2006; 57, 656-662

[93] Kelly R W, Amato F & Seamark R F. N-acetly-5- methoxy kynorenamine, brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesis. Biochem Biophys Res Commun 1984; 121, 372-379

[94] Webley G E, Bohle A & Leidenberger F A. Positive relationship between the nocturnal concentrations of melatonin and prolactin, and a stimulation of prolactin after melatonin administration in young men. J Pineal Res 1988; 5, 19-33

[95] Vondrasova-Jelinkova D, Hajek I & Illnerova H. Adjustment of the human melatonin and cortisol rhythms to shortening of the natural summer photoperiod. Brain Res 1999; 816, 249-253

[96] Wetterberg L. The relationship between the pineal gland and the pituitary-adrenal axis in health, endocrine and psychiatric conditions. Psychoneuroendocrinol 1983; 8, 75-80

[97] Sorenson D. An adventitious role of cortisol in degenerative process due to decrease opposition by insulin: implication of aging. Med Hypotheses 1981; 7, 315-331

[98] Wu Y H & Swaab D F. The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 2005; 38, 145-152

[99] Selmaoui B & Touitou Y. Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: A study of three different 24-h cycles over six weeks. Life Sci 2003; 73, 3339-3349

[100] Lewiniski A & Karbownik M. Melatonin and the thyroid gland. Neuroendocrinol Lett 2002; 23, 73-78

[101] Kennaway D J & Rowe S A. Melatonin binding sites and their role in seasonal reproduction. J Reprod Fertil Suppl 1995; 49, 423-435

[102] Wojtowicz M & Jakiel G. Melatonin and its role in human reproduction. Ginekol Pol 2002; 73, 1231-1237

[103] Hazlerigg D G. What is the role of melatonin within the anterior pituitary? J Endocrinol 2001; 170, 493-501

[104] Roy D & Belsham D D. Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons: signal transduction mechanisms. J Biol Chem 2001; 277, 251-258

[105] Vanecek J. Inhibitory effect of melatonin on GnRHinduced LH release. Rev Reprod 1999; 4, 67-72

[106] Balik A, Kretschmannova K, Mazna P, Svobodova I & Zemkova H. Melatonin action in neonatal gonadotrophs. Physiol Res 2004; 53, 153-166

[107] Commentz J C & Helmke K. Precocious puberty and decreased melatonin secretion due to a hypothalamic hematoma. Horm Res 1995; 44, 271-275

[108] Juszczak M & Stempniak B. Melatonin inhibits the substance-P induced secretion of vasopressin and oxytocin from the rat hypothalamo-neurohypophyseal system: In vitro studies. Brain Res Bull 2003; 59, 393-397

[109] Yie S M, Niles L P & Yopunglai E V. Melatonin receptors on human granulosa cell membranes. J Clin Endocrinol Metab 1995; 80, 1747-1749

[110] Woo M M, Tai C J, Kang S K, Nathwani P S, Pang S F & Lueng P C. Direct action of melatonin on human granulose-luteal cells. Clin Endocrinol Metab 2001; 86, 4789-4797

[111] Stocco C, Telleria C & Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007; 28, 117-149

[112] Cohen M, Lippman M & Chabner B. Role of pineal gland in aetiology and treatment of breast cancer. Lancet 1978; 2, 814-816

[113] Kiefer T, Ram PT, Yuan L & Hill S M. Melatonin inhibits estrogen receptor transactivation and cAMP levels in breast cancer cells. Breast Cancer Res Treat 2002; 71, 37-45

[114] Sanchez-Barcelo E J, Cos S, Mediavilla D, MartinezCampa C, Gonzalez A & Alonso-Gonzalez C. Melatonin-estrogen interactions in breast cancer. J Pineal Res 2005; 38, 217-222

[115] Mills W, Wu P, Seely D & Guyatt G. Melatonin in treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res 2005; 39, 360-366

[116] Blask D E, Brainard G C, Dauchy R T, Hanifin J P, Davidson L K, Krause J A, Sauer L A, Rivera-Bermudez M A, Dubocovich M L, Jasser S A, Lynch D T, Rollag M D &Zalatan F. Melatonin depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 2005; 65, 11174-11184

[117] Reiter R J. Mechanisms of cancer inhibition by melatonin. J Pineal Res 2004; 3, 213-214

[118] Martin V, Herrera F, Carrera-Gonzales P, Garcia-Santos G, Antolin I, Rodriquez–Blanco J & Rodriquez C. Intracellular signalling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res 2006; 66, 1081-1088

[119] Cini G, Neri B, Pacini A, Cesati V, Sassoli C, Quattrone S, D’Apolito M, Fazio A, Scapaqnini G, Provenzani A & Quattrone A. Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: A molecular basis of melatonin-induced oncostatic effects. J Pineal Res 2005; 39, 12-20

[120] Altun A & Ugur-Altun B. Melatonin: therapeutic and clinical utilization. Int J Clin Pract 2007; 1-11

[121] Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, L.; Schiwara, H.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31.

[122] West, G.B. Tryptamines in edible fruits. J. Pharm. Pharmacol. 1958, 10, 589–590.

[123] Udenfriend, S.; Lovenberg, W.; Sjoerdsma, A. Physiologically active amines in common fruits and vegetables. Arch. Biochem. Biophys. 1959, 85, 487–490.

[124] Quay, W.B. Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 1963, 14, 473–479.

[125] Klein, D.C.; Weller, J.L.; Moore, R.Y. Melatonin metabolism: neural regulation of pineal serotonin: Acetyl coenzyme A N-acetyltransferase activity. Proc. Natl. Acad. Sci. USA 1971, 68, 3107–3110.

[126] Champney, T.H.; Holktorf, A.P.; Steger, R.W.; Reiter, R.J. Concurrent determination of enzymatic activities and substrate concentrations in the melatonin synthetic pathway within the same rat pineal gland. J. Neurosci. Res. 1984, 11, 59–66.

[127] Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J. Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993, 1, 57–60.

[128] Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kancho, R.; Hara, M.; Sazuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634.

[129] Brainard, G.C.; Petterborg, L.J.; Richardson, B.S.; Reiter, R.J. Pineal melatonin in Syrian hamsters: Circadian and seasonal rhythms in animals maintained under laboratory and natural conditions. Neuroendocrinology 1982, 35, 342–348.

[130] Carter, D.S.; Goldman, B.D. Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology 1983, 113, 1261–1267.

[131] Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Simopoulos, A.P.; Maldonado, M.D.; Flores, L.J.; Terron, M.P. Melatonin in edible plants (phytomelatonin): Identification, concentrations, bioavailability and proposed functions. World Rev. Nutr. Diet 2007, 97, 211–230.

[132] Murch, S.J., Simmons R.C., Saxena P.X. Melatonin in ferfew and other medicl plants. The Lancet 1997; 350: 1598-9.

[133] Manchester L.C., D.-X. Tan, R.J. Reiter, W. Park, K. Monis, W. Qi. High levels of melatonin in the seeds of edible plants: possible function in germ cell protection. Life Sciences 2000; 67: 3023-3029.

[134] Reiter, R.J.; Tamura, H.; Tan, D.X.; Xu, X.P. Melatonin and the circadian system: Contributions to successful female reproduction. Fertil. Steril. 2014; 102, 321–328.

[135] Reiter, R.J.; Manchester, L.C.; Tan, D.X. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924.

[136] Oladi, E.; Mohamadi, M.; Shamspur, T.; Mostafavi, A. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014; 132, 326–329.

[137] Vaughan, G.M.; Pelham, R.W.; Pang, S.F.; Laughlin, L.L.; Wilson, K.W.; Sandock, K.L.; Vaughn, M.K.; Koslow, S.H.; Reiter, R.J. Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: Attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. J. Clin. Endocrinol. Metab. 1976; 42, 752–764.

[138] Pang, S.F. Melatonin concentrations in blood and pineal gland. Pineal Res. Rev. 1985; 3, 115–160.

[139] El Allali, K.; Sinitskaya, N.; Bothorel, B.; Achaaban, R.; Pevet, P.; Simonneaux, V. Daily Aa-nat gene expression in the camel (Camelus dromedarius) pineal gland. Chronobiol. Int. 2008, 25, 600–607.

[140] Menendez-Pelaez, A.; Howes, K.A.; Gonzalez-Brito, A.; Reiter, R.J. N-acetyltransferase activity, hydroxyindole-O-methyltransferase activity and melatonin levels in the Harderian glands of mate Syrian hamsters: Changes during the light:dark cycle and the effect of 6-parachlorophenylalanine administration. Biochem. Biophys. Res. Commun. 1987, 145, 1231–1238.

[141] Venegas, C.; Garcia, J.A.; Escames, G.; Ortiz, F.; Lopez, A.; Doerrier, C.; Garcia-Corzo, L.; Lopez, L.C.; Reiter, R.J.; Acuna-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012, 52, 217–227.

[142] Poeggeler, B.; Hardeland, R. Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: Solutions to the problem of methoxyindole destruction in non-vertebrate material. J. Pineal Res. 1994, 17, 1–10.

[143] Chen, G.; Huo, Y.; Tan, D.X.; Liang, Z.; Zhang, W.; Zhang, Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003, 73, 19–26.

[144] Reiter, R.J. Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radicals. Eur. J. Endocrinol. 1996, 134, 412–420.

[145] Burkhardt, S.; Reiter, R.J.; Tan, S.X.; Hardeland, R.; Cacrera, J.; Karbownik, M. DNA oxidatively damaged by chromium(III) and H2O2 is protected by the antioxidants melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, resveratrol and uric acid. Int. J. Biochem. Cell Biol. 2001, 33, 775–783.

[146] Ressmeyer, A.R.; Mayo, J.C.; Zelosko, V.; Sainz, R.M.; Tan, D.X.; Poeggeler, B.; Antolin, I.; Zsizsik, R.K.; Reiter, R.J.; Hardeland, R. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): Scavenging of free radicals and prevention of protein destruction. Redox. Rep. 2003, 8, 205–213.

[147] Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 2007, 42, 28–42.

[148] Hardeland, R.; Cardinali, D.P.; Srinivasan, V.S.; Brown, G.M.; Spence, D.W.; Pandi-Perumal, S.R. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 2011, 93, 350–384.

[149] Galano, A.; Tan, D.X.; Reiter, R.J. Cyclic 3-hydroxymelatonin, a key metaboite enhancing the peroxyl radical scavening activity of melatonin. Roy. Soc. Chem. Adv. 2014, 4, 4220–4227.

[150] Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin reduces lipid peroxidation and membrane viscosity. Front. Physiol. 2014, 5, doi:10.3389/fphys.2014.00377.

[151] Tan, D.X.; Hardeland, R.; Manchester, L.C.; Galano, A.; Reiter, R.J. Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem. 2014, 21, 1557–1565.

[152] Balzer, I.; Hardeland, R. Melatonin in algae and higher plants: Possible new roles as a phytohormone and antioxidant. Bot. Acta 1996, 109, 180–183.

[153] Hardeland, R.; Fuhrberg, B. Ubiquitous melatonin: Presence and effects in unicells, plants, and animals. Trends Comp. Biochem. Physiol. 1996, 7, 25–45.

[154] Kolar, J.; Machackova, I. Occurrence and possible function of melatonin in plant: A review. Endocytobiosis Cell Res. 2001, 14, 75–84.

[155] Reiter, R.J.; Tan, D.X.; Burkhardt, S.; Manchester, L.C. Melatonin in plants. Nutr. Rev. 2001, 59, 286–290.

[156] Van Tassel, D.L.; O’Neill, S.D. Putative regulatory molecules in plants: Evaluating melatonin. J. Pineal Res. 2001, 31, 1–7.

[157] Murch, S.J.; Saxena, P.K. Melatonin: A potential regulator of plant growth and development? In Vitro Cell. Dev. Biol.-Plant. 2002, 38, 531–536.

[158] Reiter, R.J.; Tan, D.X. Melatonin: An antioxidant in edible plants. Ann. N. Y. Acad. Sci. 2002, 957, 341–344.

[159] Caniato, R.; Filippini, R.; Piovan, A.; Puricelli, L.; Borsarini, A.; Cappaelletti, E.M. Melatonin in plants. Adv. Exp. Med. Biol. 2003, 527, 593–597.

[160] Hardeland, R.; Pandi-Perumal, S.R. Melatonin, a potent agent in antioxidative defense: Actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr. Metab. (Lond.) 2005, 2, 22–31.

[161] Kolar, J.; Machackova, I. Melatonin in higher plants: Occurrence and possible functions. J. Pineal Res. 2005, 39, 333–341.

[162] Reiter, R.J.; Craft, C.M.; Johnson, J.E., Jr.; King, T.S.; Richardson, B.A. Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology 1981, 109, 1295–1297.

[163] Reiter, R.J. Normal patterns of melatonin levels in the pineal gland and body fluids of humans and experimental animals. J. Neural. Transm. Suppl. 1986, 21, 35–54.

[164] Todini, L.; Terzano, G.M.; Borghese, A.; Debenedetti, A.; Malfatti, A. Plasma melatonin in domestic female Mediterranean sheep (Comisana breed) and goats (Maltese and Red Syrian). Res. Vet. Sci. 2011, 90, 35–39.

[165] El Allali, K.; Achaaban, M.R.; Vivien-Roels, B.; Bothorel, B.; Tligui, N.S.; Pevet, P. Seasonal variations in the nycthemeral rhythm of plasma melatonin in the camel (Camelus dromedarius). J. Pineal Res. 2005, 39, 121–128.

[166] Paul, MA.; Love, R.J.; Hawton, A.; Arendt, J. Sleep and the endogenous melatonin rhythm of high artic residents during summer and winter. Physiol. Behav. 2015, 141, 199–206.

[167] Reiter, R.J. Melatonin: The chemical expression of darkness. Mol. Cell. Endocrinol. 1991, 79, C153–C159.

[168] Lewy, A.J.; Wehr, T.A.; Goodwin, F.K.; Newsome, D.A.; Markey, S.P. Light suppresses melatonin secretion in humans. Science 1980, 210, 1267–1269.

[169] Brainard, G.C.; Richarson, B.A.; King, T.S.; Matthews, S.A.; Reiter, R.J. The suppression of

pineal melatonin content and N-acetyltransferase activity by different light irradiances in the Syrian hamster: A dose-response relationship. Endocrinology 1983, 113, 293–296.

[170] McIntyre, I.M.; Norman, T.R.; Burrows, G.D.; Armstrong, S.M. Human melatonin suppression by light is intensity dependent. J. Pineal Res. 1989, 6, 149–156.

[171] Kolar, J.; Johnson, C.H.; Machackova, I. Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum. Adv. Exp. Med. Biol. 1999, 460, 391–393.

[172] Tan, D.X.; Manchester, L.C.; Di Mascio, P.; Martinez, G.R.; Prado, F.M.; Reiter, R.J. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: Importance for phytoremediation. FASEB J. 2007, 21, 1724–1729.

[173] Tan, D.X.; Reiter, R.J.; Manchester, L.C.; Yan, M.T.; El-Sawi, R.M.; Mayo, J.C.; Kohen, R.; Allegra, M.; Hardeland, R. Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top Med. Chem. 2002, 2, 181–197.

[174] Hardeland, R.; Tan, D.X.; Reiter, R.J. Kynuramines, metabolites of melatonin and other indoles: The resurrection of an almost forgotten class of biogenic amines. J. Pineal Res. 2009, 47, 109–126.

[175] Suzen, S. Melatonin and synthetic analogs as antioxidants. Curr. Drug Deliv. 2013, 10, 71–75.

[176] Li, Y.; Yang, Y.; Feng, Y.; Yan, J.; Fan, C.; Jiang, S.; Ou, Y. A review of melatonin in hepatic ischemia/reperfusion injury and clinical liver disease. Ann. Med. 2014, 46, 503–511.

[177] Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257.

[178] Zhang, H.M.; Zhang, Y. Melatonin: A well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 2014, 57, 131–146.

[179] Kihara, S.; Hartzler, D.A.; Savikhin, S. Oxygen concentration inside a functioning photosynthetic cell. Biophys. J. 2014, 106, 1882–1889.

[180] Tal, O.; Haim, A.; Harel, O.; Gerchman, Y. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J. Exp. Bot. 2011, 62, 1903–1910.

[181] Hayden, H.S.; Waaland, R.J. A molecular systemic study Ulva (Ulvaceae, Ulvales) from the northern Pacific. Phycologia 2004, 43, 364–382.

[182] Loughnane, C.J.; McIvor, L.M.; Rindi, F.; Stengel, D.B.; Guiry, M.D. Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia 2008, 47, 416–429.

[183] Burkhardt, S.; Tan, D.X.; Manchester, L.C.; Hardeland, R.; Reiter, R.J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J. Agric. Food Chem. 2001, 49, 4898–4902.

[184] Hardeland, R.; Poeggeler, B. Melatonin and synthetic melatonergic agonists: Actions and metabolism in the central nervous system. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 189–216.

[185] Gandi, A.V.; Mosser, E.A.; Oikonomou, G.; Prober, D.A. Melatoin is required for the circadian regulation of sleep. Neuron 2015, 85, 1193–1199.

[186] Garrido, M.; Paredes, S.D.; Cubero, J.; Lozano, M.; Toribio-Delgado, A.F.; Munoz, J.L.; Reiter, R.J.; Barriga, C.; Rodriguez, A.B. Jerte Valley cherry-enriched diets improve nocturnal rest and incease 6-sulfatoxy melatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 909–914.

[187] Pigeon, W.R.; Carr, M.; Gorman, C.; Perlis, M.L. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: A pilot study. J. Med. Food 2010, 13, 579–583.

[188] Howatson, G.; Bell, P.G.; Tallent, J.; Middleton, B.; McHugh, M.P.; Ellis, J. Effect of tart cherry juice (Prunus cerasus) on melatonin levels and enhanced sleep quality. Eur. J. Nutr. 2012, 51, 909–916.

[189] Garrido, M.; Gonzalez-Gomez, D.; Lozano, M.; Barriga, C.; Paredes, S.D.; Rodriguez, A.B. A Jerte Valley cherry product provides beneficial effects on sleep quality. Influence on aging. J. Nutr. Health Aging 2013, 17, 553–560.

[190] Zhao, Y; Tan, D.X.; Lei, Q.; Chen, H.; Wang, L.; Li, Q.T.; Gao, Y.; Kong, J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 2013, 55, 79–88.

[191] Lei, Q.; Wang, L.; Tan, D.X.; Zhao, Y.; Zheng, X.D.; Chen, H.; Li, Q.T.; Zuo, B.X.; Kong, J. Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (Malus domesticus Borkh. cv. Red) and their expression and melatonin production during fruit development. J. Pineal Res. 2013, 55, 443–451.

[192] Bonnefont-Rousselot, D.; Collin, F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology 2010, 278, 55–67.

[193] Govender, J.; Loos, B.; Marais, E.; Engelbrecht, A.M. Mitochondrial catastrophe duirng doxorubin-induced cardiotoxicity: A review of the protective role of melatonin. J. Pineal Res. 2014, 57, 367–380.

[194] Arnao, M.B.; Hernandez-Ruiz, J. Chemical stress by different agents affects the melatonin content of barley roots. J. Pineal Res. 2009, 46, 295–299.

[195] Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71.

[196] Xu, C.; Zhang, H.; Han, L.; Zhai, L. Characteristic montioring of groundwater—Salt transportation and input-output in inland arid irrigation area. J. Environ. Biol. 2014, 35, 1181–1189.

[197] Okazaki, M.; Higuchi, K.; Hanawa, Y.; Shiraiwa, Y.; Ezura, H. Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J. Pineal Res. 2009, 46, 373–382.

[198] Byeon, Y.; Park, S.; Lee, H.Y.; Kim, Y.S.; Back, K. Elevated production of melatonin in transgenic rice seeds expressng rice tryptophan decarboxylase. J. Pineal Res. 2014, 56, 275–282.

[199] Li, C.; Wang, P.; Wei, Z.; Liang, D.; Liu, C.; Yin, L.; Jia, D.; Fu, M.; Ma, F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 2012, 53, 298–306.

[200] Barlow-Walden, L.R.; Reiter, R.J.; Abe, M.; Pablos, M.; Menendez-Pelaez, A.; Chen, L.D.; Poeggeler, B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem. Int. 1995, 26, 497–502.

[201] Pablos, M.I.; Reiter, R.J.; Ortiz, G.G.; Guerrero, J.M.; Agapito, M.T.; Chuang, J.I. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem. Int. 1998, 32, 69–75.

[202] Fischer, T.W.; Kleszczynski, K.; Hardkop, L.H.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene experession (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxygaunosine) in ex vivo human skin. J. Pineal Res. 2013, 54, 303–312.

[203]Tomas-Zapico, C.; Coto-Montes, A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J. Pineal Res. 2005, 39, 99–104.

[204] Kostopoulou, Z.; Therios, I.; Roumeliotis, E.; Kanellis, A.K.; Molassiotis, A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol. Biochem. 2015, 86, 155–165.

[205] Smith, T.B.; Staub, B.A.; Natarajan, G.M.; Lasorda, D.M.; Poomima, I.G. Acute myocardial infarction associated with dietary supplements containing 1,3-dimethylamylamine and Citrus aurantium. Texas Heart Inst. J. 2014, 41, 70–72.

[206] Mukherjee, S.; David, A.; Yadav, S.; Baluska, F.; Bhatla, S.C. Salt stress-induced seedling growth inhibition concides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol. Plant 2014, 152, 714–728.

[207] Syvertsen, J.P.; Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 2014, 103, 128–137.

[208] Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349.

[209] Sharma, S.; Singh, B.; Manchanda, V.K. Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ. Sci. Pollut. Res. Int. 2015, 22, 946–962.

[210] Tan, D.X.; Manchester, L.C.; Helton, P.; Reiter, R.J. Phytoremediative capacity of plants enriched with melatonin. Plant Signal. Behav. 2007, 2, 51–516.

[211] Lagriffoul, A.; Mocquot, B.; Mench, M.; Vangronsveld, J. Cadmium toxicity effects growth, mineral and chlorophyll contents and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 1998, 200, 241–250.

[212] Schützendübel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365.

[213] Abrahamsson, K.; Choo, K.S.; Pedersen, M.; Johansson, G.; Snoeijs, P. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae. Phytochemistry 2003, 64, 725–734.

[214] Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229C, 247–261.

[215] Salazar-Parra, C.; Aranjuelo, I.; Pascual, I.; Erice, G.; Sanz-Saez, A.; Aquirreolea, J.; Sanchez-Diaz, M.; Irigoyen, J.J.; Araus, J.L.; Morales, F. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J. Plant Physiol. 2015, 174, 97–109.

[216] Savi, T.; Bertuzzi, S.; Branca, S.; Tretiach, M.; Nardini, A. Drought-induced xylem cavitation and hydraulic deterioration: Risk factors for urban trees under climate change. New Phytol. 2015, 205, 1106–1116.

[217] Wang, P.; Sun, X.; Li, C.; Wei, Z.; Liang, D.; Ma, F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 2013, 54, 292–302.

[218] Wang, L; Zhao, Y.; Reiter, R.J.; He, C.; Liu, G.; Lei, Q.; Zuo, B.; Zheng, X.D.; Li, Q.; Kong, J. Changes in melatonin levels in transgenic “Micro Tom” tomato overexpressing ovine AANAT and ovine HIOMT genes. J. Pineal Res. 2014, 56, 134–142.

[219] Bajwa, V.S.; Shukla, M.R.; Sherif, S.M.; Murch, S.J.; Saxena, P. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 2014, 56, 238–245.

[220] Shi, H.; Chan, Z. The cysteine2/histidine2-type transcription factor zinc finger of Arabidopsis thaliana 6-activated C-repeat-binding factor pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J. Pineal Res. 2014, 57, 185–191.

[221] Meng, J.F.; Xu, T.F.; Wang, Z.Z.; Fang, Y.L.; Xi, Z.M.; Zhang, Z.W. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: Antioxidant metabolites, leaf anatomy, and chloroplast morphology. J. Pineal Res. 2014, 57, 200–212.

[222] Li, C.; Tan, D.X.; Liang, D.; Chang, C.; Jia, D.; Ma, F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in two Malus species under drought stress. J. Exp. Bot. 2015, 66, 669–680.

[223]Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 2007, 10, 296–302.

[224] Sperry, J.; Hacke, U.; Uren, R.; Comstock, J. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 2002, 25, 251–263.

[225] Katul, G.; Leuning, R.; Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ. 2003, 26, 339–350.

[226] Shi, H.; Jiang, C.; Ye, T.; Tan, D.X.; Reiter, R.J.; Zhang, H.; Liu, R.; Chan, Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J. Exp. Bot. 2015, 66, 681–694.

[227] Weeda, S.; Zhang, N.; Zhao, X.; Ndip, G.; Guo, Y.; Buck, G.A.; Fu, C.; Ren, S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 2014, 9, e93462.

[228] Lei, X.Y.; Zhu, R.Y.; Zhang, G.Y.; Dai, Y.R. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: The possible involvement of polyamines. J. Pineal Res. 2004, 36, 126–131.

[229] Posmyk, M.M.; Balabusta, M.; Wieczorek, M.; Sliwinska, E.; Jana, K.M. Melatonin applied to cucumber (Cucumis sativus L.) seeds improves gemination during chilling stress. J. Pineal Res. 2009, 46, 214–223.

[230] Park, S.; Lee , D.E.; Jang, H.; Byeon, Y.; Kim, Y.S.; Back, K. Melatonin-rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J. Pineal Res. 2013, 54, 258–263.

[231] Melchiorri, D.; Reiter, R.J.; Sewerynek, E.; Hara, M.; Chen, L.; Nistico, G. Paraquat toxicity and oxidative damage: Reduction by melatonin. Biochem. Pharmacol. 1996, 51, 1095–1099.

[232] Bhatti, J.S.; Sidhu, I.P.; Bhatti, G.K. Ameliorative action of melatonin on oxidative damage induced by atrazine toxicity in rat erythrocytes. Mol. Cell. Biochem. 2011, 353, 139–149.

[233] Afreen, F.; Zobayed, S.M.A.; Kozai, T. Melatonin in Glycyrrhiza uralensis: Response of plant roots to spectral quality of light and UV-B radiation. J. Pineal Res. 2006, 108–115.

[234] Posmyk, M.M.; Kuran, H.; Marciniak, K.; Janas, K.M. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper concentrations. J. Pineal Res. 2008, 45, 24–31.

[235] Harada, Y.; Sawamura, K.; Konno, K. Diplocarpon mali sp. nov. the perfect state of apple blotch fungus Marssonina coronaria. Ann. Phytopathol. Soc. Jpn. 1974, 40, 412–418.

[236] Donghoon, S.; Hunjoohg, K.; Yangyik, S. Influence of defoliation by Marssonina blotch on vegetative growth and fruit quality in “Fuji”/M.9 apple tree. Korean J. Hortic. Sci. Technol. 2011, 29, 531–538.

[237] Sharma, J.N.; Sharma, A.; Sharma, P. Out-break of Marssonina blotch in warmer climates causing premature leaf fall problem of apple and its management. Acta Hortic. 2004, 662, 405–409.

[238] Yin, L.; Wang, P.; Li, M.; Ke, X.; Li, C.; Liang, D.; Wu, S.; Ma, X.; Li, C.; Zou, Y.; et al. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J. Pineal Res. 2013, 54, 426–434.

[239] Lee, H.Y.; Byeon, Y.; Tan, D.X.; Reiter, R.J.; Back, K. Arabidopsis seratonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid resulting in susceptibility to an avirulent pathogen. J. Pineal Res. 2015, 58, 291–299.

[240] Lim, P.O.; Nam, H.G. The molecular and gentic control of leaf senescence and longevity in Arabidopsis. Curr. Top Dev. Biol. 2005, 67, 49–83.

[241] Lim, P.O.; Kim, H.J.; Nam, H.G. Leaf senescence. Annu. Rev. Plant Biol. 2007, 58, 115–136.

[242] Arnao, M.B.; Hernandez-Ruiz, J. Protective effect of melatonin agaist chlorophyll degradation during the senescence of barley leaves. J. Pineal Res. 2009, 46, 58–63.

[243] Wang, P.; Yin, L.; Liang, D.; Li, C.; Ma, F.; Yue, Z. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate-glutathione cycle. J. Pineal Res. 2012, 53, 11–20.

[244] Wang, P.; Sun, X.; Chang, C.; Feng, F.; Liang, D.; Cheng, L.; Ma, F. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J. Pineal Res. 2013, 55, 424–434.

[245] Wang, P.; Sun, X.; Xie, Y.; Li, M.; Chen, W.; Zhang, S.; Liang, D.; Ma, F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. J. Pineal Res. 2014, 57, 291–307.

[246] Shi, H.; Reiter, R.J.; Tan, D.X.; Chan, Z. INDOLE-3-ACETIC ACID INDUCIBE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J. Pineal Res. 2015, 58, 26–33.

[247] Paredes, S.D.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Reiter, R.J. Phytomelatonin: A review. J. Exp. Bot. 2009, 60, 57–69.

[248] Posmyk, M.M.; Janas, K.M. Melatonin in plants. Acta Physiol. Plant. 2009, 31, 1–11.

[249] Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773.

[250] Sauer, M.; Robert, S.; Kleine-Vehn, J. Auxin: Simply complicated. J. Exp. Bot. 2013, 64, 2565–2577.

[251] Arnao, M.B.; Hernandez-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014, 19, 789–797.

[253] Hardeland, R. Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. J. Exp. Bot. 2015, 66, 627–646.

[254] Hernandez-Ruiz, J.; Cano, A.; Arnao, M.B. Melatonin: Growth-stimulating compound present in lupin tissues. Planta 2004, 220, 140–144.

[255] Hernandez-Ruiz, J.; Cano, A.; Arna, M.B. Melatonin acts as a growth-stimulating compound in some monocot species. J. Pineal Res. 2005, 39, 137–142.

[256] Arnao, M.B.; Hernandez-Ruiz, J. The physiological function of melatonin in plants. Plant Signal. Behav. 2006, 1, 89–95.

[257] Arnao, M.B.; Hernandez-Ruiz, J. Melatonin in plants: More studies are necessary. Plant Signal. Behav. 2007, 2, 381–382.

[258] Jones, M.P.; Cao, J.; O’Brien, R.; Murch, S.J.; Saxena, P.K. The mode of action of thidiazuron: Auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep. 2007, 26, 1481–1490.

[259] Okazaki, M.; Higuchi, K.; Aouini, A.; Ezura, H. Lowering intracellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. J. Pineal Res. 2010, 49, 239–247.

[260] Murch, S.J.; Saxena, P.K. A melatonin-rich germplasma line of St. John’s Wort (Hypericum perforatum L.). J. Pineal Res. 2006, 41, 284–287.

[261] Kang, L.; Lee, K.; Park, S.; Kim, Y.S.; Back, K. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. J. Pineal Res. 2010, 49, 176–182.

[262] Wang, Y.J. Genetic Transformation of Nicotiana tobacum L. and Hypericum perforatum L. by Agrobacterium tumefaciens Carrying Melatonin Synthetase Gene and Enhancement of Antioxidative Capacity in Transgenic plants. Ph.D. Thesis, College of Science, Northwest A and F University, Yangling, China, 2008.

[263] Xu, X.D.; Sun, Y.; Guao, X.; Sun, B.; Zhang, J. Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Ying Yong Sheng Tai Xue Bao 2010, 21, 2580–2586.

[264] Tan, D.X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.; Ma, S.; Rosales-Corral, S.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 2012, 63, 577–597.

[265] Peret, B.; Larrieu, A.; Bennett, M.J. Lateral root emergence: A difficult birth. J. Exp. Bot. 2009, 60, 3637–3643.

[266] Himanen, K.; Boucheron, E.; Vanneste, S.;Vercruysse, S.; Boucheron, E.; Aalard, P.; Chriqui, D. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 2002, 14, 2339–2351.

[267] Seo, P.J.; Park, C.M. Auxin homeostasis during lateral root development under drought conditions. Plant Signal Behav. 2009, 4, 1002–1004.

[268] Murch, S.J.; Campbell, S.S.B.; Saxena, P.K. The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro cultured explants of St. john’s Wort (Hypericum perforatum L.). In Vitro Cell Dev. Biol. 2001, 37, 386–393.

[269] Chen, Q.; Qi, W.B.; Reiter, R.J.; Wei, W.; Wang, B.M. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J. Plant Physiol. 2009, 166, 324–328.

[270] Sarropoulon, V.N.; Therios, I.N.; Dimassi-Theriou, K.N. Melatonin promotes adventitous root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM60 (P. avium × P. mahaleb). J. Pineal Res. 2012, 52, 38–46.

[271] Arnao, M.; Hernandez-Ruiz, J. Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J. Pineal Res. 2007, 42, 147–152.

[272] Pelagio-Flores, R.; Munoz-Parra, E.; Ortiz-Castro, R.; Lopez-Bucio J. Melatonin regulates Arabidopsis root system architecture likely acting independetly of auxin signaling. J. Pineal Res. 2012, 53, 279–288.

[273] Zhang, N.; Zhang, H.J.; Zhao, B.; Sun, Q.Q.; Cao, Y.Y.; Li, R.; Wu, X.X.; Weeda, S.; Li, L.; Ren, S.; et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 2014, 56, 39–50.

[274] De Tomasi, J.A. Improving the technique of the Feulgen stain. Stain Technol. 1936, 11, 137–144.

[275] Tiryaki, I.; Keles, H. Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J. Pineal Res. 2012, 52, 332–339.

[276] Wei, W.; Li, Q.T.; Chu, Y.N.; Reiter, R.J.; Yu, X.M.; Zhu, D.H.; Zhang, W.K.; Ma, B.; Lin, Q.; Zhang, J.S.; et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot. 2015, 66, 695–707.

[277] Specht, J.E.; Hume, D.J.; Kumudini, S.V. Soybean yield potential—A genetic and physiological perspective. Crop Sci. 1999, 39, 1560–1570.

[278] Masuda, T.; Goldsmith, P.D. World soybean production: Area harvested, yield and long-term projections. Int. Food Agribus. Manag. Rev. 2009, 12, 143–162.

[279] Byeon, Y.; Park, S.; Kim, Y.S.; Park, D.H.; Lee, S.; Back, K. Light-regulated melatonin biosynthesis in rice during senescence process in detached leaves. J. Pineal Res. 2012, 53, 107–111.

[280] Park, S.; Byeon, Y.; Back, K. Functional analyses of three ASMT gene family members in rice plants. J. Pineal Res. 2013, 55, 409–415.

[281] Byeon, Y.; Lee, H.Y.; Lee, K.; Park, S.; Back, K. Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J. Pineal Res. 2015, 56, 107–114.

[282] Byeon, Y.; Back, K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res. 2014, 56, 189–195.

[283] Park, S.; Lee, K.; Kim, Y.S.; Back, K. Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J. Pineal Res. 2012, 52, 211–216.

[284] Park, S.; Byeon, Y.; Back, K. Transcriptional suppression of tryptamine 5-hydroxylase, a terminal serotonin biosynthetic gene, induces melatonin biosynthesis in rice (Oryza sativa, L.). J. Pineal Res. 2013, 55, 131–137.

[285] Kang, K.; Lee, K.; Park, S.; Byeon, Y.; Back, K. Molecular cloning of rice serotonin N acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J. Pineal Res. 2013, 55, 7–13.

[286] Byeon, Y.; Lee, H.Y.; Lee, K.; Back, K. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep seratonin N-acetyltransferase expressed in transgenic rice plants. J. Pineal Res. 2014, 57, 147–154.

[287] Byeon, Y.; Lee, H.Y.; Choi, D.W.; Back, K. Chloropast-encoded serotonin N-acetyltransferase in the red alga (Pyropia Yezoensis): Gene transition to the nucleus from chloroplasts. J. Exp. Bot. 2015, 66, 709–171.

[288] Byeon, Y.; Lee, K.; Park, Y.I.; Park, S.; Back, K. Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J. Pineal Res. 2013, 55, 371–376.

[289] Park, S.; Byeon, Y.; Lee, H.Y.; Kim, Y.S.; Ahn, T.; Back, K. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J. Pineal Res. 2014, 57, 348–355.

[290] Byeon, Y.; Park, S.; Kim, Y.S.; Back, K. Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase. J. Pineal Res. 2013, 55, 357–363.

[291] Sun, Q.; Zhang, N.; Wang, J.; Zhang, H.; Li, D.; Shi, J.; Li, R.; Weeda, S.; Zhao, B.; Ren, S.; et al. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot. 2015, 66, 657–668.

[292] Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055.

[293] Slominski A, Pisarchik A, Semak I et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J 2002; 16: 896–898.

[294] Slominski A, Semak I, Pisarchik A, Sweatman T, Szczesniewski A, Wortsman J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett 2002; 511: 102–106.

[295] Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Serotoninergic system in hamster skin. J. Investig. Dermatol. 2002, 119, 934–942.

[296] Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J. Characterization of the serotoninergic system in the C57BL/6 mouse skin. Eur. J. Biochem. 2003, 270, 3335–3344.

[297] Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 2002, 511, 102–106.

[298] Slominski, A.; Wortsman, J.; Tobin, D.J. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2005, 19, 176–194.

[299] Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. MeTable 2008, 19, 17–24.

[300] Slominski, A.; Pisarchik, A.; Johansson, O.; Jing, C.; Semak, I.; Slugocki, G.; Wortsman, J. Tryptophan hydroxylase expression in human skin cells. Biochim. Biophys. Acta 2003, 1639, 80–86.

[301] Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J.; Szczesniewski, A.; Slugocki, G.; McNulty, J.; Kauser, S.; Tobin, D.J.; et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002, 16, 896–898.

[302] Kim, T.K.; Lin, Z.; Tidwell, W.J.; Li, W.; Slominski, A.T. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol. Cell. Endocrinol 2014, in press, doi:10.1016/j.mce.2014.07.024.

[303] Slominski, A.; Baker, J.; Rosano, T.G.; Guisti, L.W.; Ermak, G.; Grande, M.; Gaudet, S.J. Metabolism of serotonin to N-acetylserotonin, melatonin, and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 1996, 271, 12281–12286.

[304] Slominski, A.; Fischer, T.W.; Zmijewski, M.A.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.M.; Tobin, D.J. On the role of melatonin in skin physiology and pathology. Endocrine 2005, 27, 137–148.

[305] Fischer, T.W.; Zmijewski, M.A.; Zbytek, B.; Sweatman, T.W.; Slominski, R.M.; Wortsman, J.; Slominski, A. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int. J. Oncol. 2006, 29, 665–672.

[306] Slominski, A.T.; Kim, T.K.; Takeda, Y.; Janjetovic, Z.; Brozyna, A.A.; Skobowiat, C.; Wang, J.; Postlethwaite, A.; Li, W.; Tuckey, R.C.; et al. RORalpha and ROR gamma are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 2014, 28, 2775–2789.

[307] Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 2004; 6: 561–570.

[308] Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 2008; 17: 713–730.

[309] Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 2000; 9: 137–159.

[310] Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41: 374–381.

[311] Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 2003; 60: 1407–1426.

[312] Correa P. Human gastric carcinogenesis: a multistep and multifactorial process-First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992; 52: 6735–6740.

[313] Palli D, Trallori G, Saieva C et al. General and cancer specific mortality of a population based cohort of patients with inflammatory bowel disease: the Florence Study. Gut 1998; 42: 175–179.

[314] Moore RJ, Owens DM, Stamp G et al. Mice deficient in tumor necrosis factoralpha are resistant to skin carcinogenesis. Nat Med 1999; 5: 828–831.

[315] Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E, Fujiki H. Essential role of tumor necrosis factor alpha (TNFalpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res 1999; 59: 4516–4518.

[316] Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol 2003; 13: 107–114.

[317] Mauriz JL, Collado PS, Veneroso C, Reiter RJ, Gonzalez-Gallego J. A review of the molecular aspects of melatonin’s antiinflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54: 1–14.

[318] Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmunity 2010; 34:314– 21.

[319] Campalani E, Barker JN. The clinical genetics of psoriasis. Current Genomics 2005; 6:51 – 60.

[320] Akay A, Pekcanlar A, Bozdag KE, Altintas L, Karaman A. Assessment of depression in subjects with psoriasis vulgaris and lichen planus. J Eur Acad Dermatol Venereol 2002; 16:347 – 52.

[321] Gupta MA, Gupta AK. Psychiatric and psychological co-morbidity in patients with dermatologic disorders: epidemiology and management. Am J Clin Dermatol 2003; 4:833 – 42.

[322] Gordon-Elliott JS, Muskin PR. Managing the patient with psychiatric issues in dermatologic practice. Clin Dermatol 2013; 31:3 – 10.

[323] Esposito E, Cuzzocrea S. Anti-inflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8:228 – 42.

[324] Carrillo-Vico A, Lardone PJ, Alvarez-S á nchez N, Rodr í guez- Rodr í guez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638 – 83.

[325] Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 2010; 80:1844 – 52.

[326] Mozzanica N, Tadini G, Radaelli A, Negri M, Pigatto P, Morelli M, et al. Plasma melatonin levels in psoriasis. Acta Derm Venereol 1988; 68:312 – 6.

[327] Foitzik, K. et al. Towards dissecting the pathogenesis of retinoid induced hair loss: all trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J. Invest. Dermatol. 2005; 124, 1119–1126

[328] Foitzik, K. et al. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis driven hair follicle regression. Am. J. Pathol. 2006; 168, 748–756

[329] Olsen, E.A. et al. Evaluation and treatment of male and female pattern hair loss. J. Am. Acad. Dermatol. 2005; 52, 301–311

[330] Tobias, W.F. et al. Melatonin and the hair follicle. J. Pineal Res. 2008; 44, 1–1

[331] Fischer TW, Sweatman TW, Semak I, Sayre RM, Wortsman J, Slominski A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 2006; 20:1564-6; PMID:16793870;

[332] Menendez-Pelaez A, Reiter RJ. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 1993; 15:59-69; PMID: 8283386;

[333] Reiter RJ, Tan DX. What constitutes a physiological concentration of melatonin? J Pineal Res 2003; 34:79- 80; PMID:12485376;

[334] Reiter RJ, Tan DX, Maldonado MD. Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 2005; 39:215-6; PMID:16098101;

[335] Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R. Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 2008; 17:713-30; PMID:18643846;

[336] Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J 2005; 19:176-94; PMID:15677341;

[337] Mehraein F1, Kabir K.The effects of melatonin on open wounds of aged mice skin. Wounds. 2011 Jun; 23(6):166-70

  • logo_trentino_bivio

  • News & Eventi

  • e-mail